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Randomized, controlled trials can provide high-quality, unbiased evidence for therapeutic 
interventions but are not always a practical or viable study design for certain healthcare 
decisions, such as those involving prognostic or predictive testing. Studies using large, 
real-world databases may be more appropriate and more generalizable to the intended 
target population of physicians and patients to answer these questions but carry potential 
for hidden bias. We illustrate several emerging methods of analyzing observational stud-
ies using propensity score matching (PSM) and coarsened exact matching (CEM). These 
advanced statistical methods are intended to reveal a “hidden experiment” within an 
observational database, and so refute or confirm a potential causal effect of assignment to 
an intervention and study outcome. We applied these methods to the Optum™ Research 
Database (ORD; Eden Prairie, MN) of electronic health records and administrative claims 
data to assess the effect of the 17-gene Genomic Prostate Score® (GPS™; Genomic Health, 
Redwood City, CA) assay on use of active surveillance (AS). In a traditional multivariable 
logistic regression, the GPS assay increased the use of AS by 29% (95% CI, 24%-33%). Upon 
applying the matching methods, the effect of the GPS assay on AS use varied between 
27% and 80% and the matched data were significant among all algorithms. All matching 
algorithms performed well in identifying matched data that improved the imbalance in 
baseline covariates. By using different matching methods to assess causal inference in an 
observational database, we provide further confidence that the effect of the GPS assay on 
AS use is statistically significant and unlikely to be a result of confounding due to differ-
ences in baseline characteristics of the patients or the settings in which they were seen. 
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convenience to the trial center, 
lower costs of participation).3-5 
One approach to understand the 
generalizability of trial findings to 
real-practice settings is to compare 
the balance in the distributions of 
baseline characteristics between 
trial participants and the target 
population. 

Another approach is to use 
large, observational datasets that 
are more likely to be representa-
tive of the target population than 
many clinical trials, and to apply 
advanced statistical methods to 
control for confounding variables. 
Multivariable regression analysis 
has been used for decades to control 
for imbalances in baseline covari-
ates that could explain observed 
effects between the treated and 
control groups.6-12 Propensity scor-
ing analysis has been applied as 
an advanced method to refine 
multivariable regression analy-
sis and reduce potential for bias 
even further. An even more recent 
refinement technique, coarsened 
exact matching (CEM), can reduce 
bias even further. Pre-processing 
matching of participants in a data-
base has emerged as a method 
to obtain a dataset that might 
have resulted from a randomized 
experiment that is not transpar-
ent within an observational data-
set. The intent of matching is to 
reveal the “hidden experiment” 
upon which to make contrast, and 
to have greater confidence in the 
revealed inferences. Operationally, 
the aim of matching is to reduce 
imbalance in the empirical distri-
bution of the known pre-treatment 
confounders between the compari-
son groups. 

Observational studies have 
been used extensively to 
assess associations between 

interventions and outcomes.1 Such 
studies can often be performed 
more quickly and less expensively 
than randomized trials, while pro-
viding insights about real-world 
clinical practice. One critical chal-
lenge of observational studies is 
discerning whether the observed 
associations reflect a cause-and-
effect relationship. Specifically, 
another variable, or set of variables 
referred to as confounders, may be 
the true cause of the effect seen in 
the intervention and in the outcome. 
Figure 1 illustrates a causal graph 
of the effects among a confounder, 
an intervention assignment, and 
an outcome.2 In Figure 1(A), 
the confounder influences the 
intervention assignment and the 
outcome; however, there is no effect 
of the intervention assignment on 
the outcome. For example, older 
age or comorbidities may affect 
assignment to one or an other inter-
vention and affect the outcome (eg, 
survival), but there exists no causal 
effect of the intervention assignment 
on the outcome. In Figure 1(B),  

the confounder still exists, but 
there also exists a causal effect  
of the intervention assignment on 
the outcome. 

A gold-standard solution to the 
problem of confounding is to ran-
domly assign the intervention in a 
randomized, controlled trial. With 
a sufficiently large number of trial 
participants, random intervention 
assignment is expected to provide 
balance in the empirical distribu-
tion of the baseline variables that 
may be confounders. Consequently, 
the causal effect of an intervention 
on an outcome can be more con-
fidently inferred, regardless of the 
causal effects of any confounding 
variables. 

A well-known limitation of ran-
domized clinical trials is that the 
trial participants may not be rep-
resentative of the population of 
interest for whom the findings are 
ultimately intended to be applied. 
For example, higher rates of trial 
participation are associated with 
personal factors (younger age, 
male sex, white race), social factors 
(higher education and income), 
and structural factors (simpler 
informed consent procedures, 
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Figure 1. Causal graphs. (A) Associations between confounder, intervention, and outcome when confounder 
has effect on intervention and the outcome, but there is no causal effect of the intervention on the outcome. 
(B) Associations between confounder, intervention, and outcome when confounder has effect on interven-
tion and the outcome, and there exists also a causal effect of the intervention on the outcome.
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We herein illustrate the applica-
tion of matching in analyzing the 
effect of the 17-gene GPS assay 
on active surveillance (AS) use in 
men with low-risk prostate cancer 
(PCa) who received GPS testing or 
were not tested, utilizing a large 
US payer system. This genomic 
assay has been commercially avail-
able since 2013, validated for mul-
tiple clinical endpoints, and shown 
to provide clinically meaningful 
results to newly diagnosed patients 
electing AS or definitive treat-
ment.13-15, 21-23 In our original anal-
ysis of this dataset, we performed 
multivariable logistic regression 
to control for variations in base-
line covariates and found that at 
6 months of follow-up, AS use 
was 31.0% higher (95% CI, 27.6%-
34.5%; P , 0.001) for men receiv-
ing the GPS test only versus men 
who did not undergo GPS testing.16 
In the study described here, we 
contrast and compare the results of 
different matching methods with 
each other and with traditional 
multivariable regression analysis to 
appraise the robustness of observed 
causal effects of the GPS assay on 
AS use. 

Methods
Data Sources, Patient 
Selection, and Study  
Measures
We used extracts of the Optum™ 
Research Database (ORD) of elec-
tronically stored medical records 
and administrative claims data 
linked to enrollment information 
and laboratory data from a large US 
health insurer offering both com-
mercial and Medicare Advantage 
health plans. Details about the 
ORD and selection of patients were 
reported previously.16

Baseline patient characteristics 
included age at diagnosis, year 
of diagnosis, census geographi-
cal region, insurance status, and 

number of comorbidities. Genomic 
testing was recorded using the 
Common Procedural Terminology 
(CPT) codes 84999, 81479, and/
or 81599. Other tests were based 
on the test’s name and measure-
ment. For example, “test_name 5 
‘Prostate-specific antigen (PSA)’, 
measurement type 5 ‘Gleason’”. 
PCa–related procedures were 
recorded for patients in the cohort 
at six- and 12-months of follow-up, 
and included radical prostatec-
tomy, radiation therapy, brachy-
therapy, cryotherapy, or hormone 
therapy. A PCa-related procedure 
was reported if the patient had only 
one procedure during the follow-up 
period. A patient with more than 
one procedure over the interval 
was designated as having had mul-
tiple procedures. A patient with no 
recorded PCa–related procedures 
was designated as having been 
assigned to AS.

Data Analysis
We applied propensity scoring 
matching (PSM) and CEM.9,17 
For PSM, we applied the follow-
ing methods: nearest-neighbor, 
genetic, optimal, and full. CEM 
uses an automatic binning algo-
rithm to coarsen values of specified 
covariates (eg, “coarsened” num-
ber of diagnoses rather than exact 
number of diagnoses). It provides 
exact matched observations based 
on these coarsened values, drop-
ping observations in both the treat-
ment and control groups without 
an exact match.

The extracted data were aggre-
gated by type of treatment, year, 
and whether the follow-up obser-
vation was at 6 or 12 months. We 
then restricted the analysis to the  
6-month data and expanded 
the dataset by randomly assign-
ing values based on means and 
standard deviation (SD) if con-
tinuous variables (eg, age, num-
ber of diagnoses, and number of 

selected diagnoses) and Dirichlet 
distributions if bracketed (insur-
ance status and region of treat-
ment). The final dataset included 
300 GPS-tested patients and  
7446 patients who had no testing 
(total n 5 7746). 

We performed all analyses 
using R implemented in RStudio 
(Version  1.1.414, © 2009-2018 
RStudio, Inc). We applied MatchIt, 
designed to work in conjunction 
with the R programming lan-
guage and statistical software R 
Development Core Team (2011). 
We initially assessed the record 
of using GPS Testing versus No 
Testing as a function of the baseline 
covariates, using logit link (default 
in MatchIt). 

We applied all analyses to cor-
rect for imbalance among baseline 
covariates prior to estimating the 
mean treatment effects. We ran 
generalized linear modeling (GLM) 
using logit family on the matched 
samples, applying weights pro-
duced by the algorithms. All GLM 
models were run with the Zelig 
library in the R studio program-
ming platform.18 

Results
Balance of Covariates Before 
and After Matching
We first looked at the balance, mea-
sured by standardized mean differ-
ence for each covariate between the 
treated (GPS Testing) and control 
(No Testing) patients (Table 1). The 
largest imbalance was found for the 
covariate “number of selected diag-
noses”, followed by “number of all 
diagnoses” and “age”. A higher pro-
portion of patients undergoing GPS 
testing had commercial insurance 
than other insurances. The stan-
dardized mean difference declined 
for all covariates after matching, 
especially in the covariates with the 
largest standardized mean differ-
ences (Figure 2). 
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original published report and after 
applying various matching methods 
(Table 2), different matching algo-
rithms selected different matched 
pairs. For example, the nearest-
neighbor PSM algorithm found a 
match that included 132 subjects 
in both groups. CEM resulted in 
981 untested patients and 99 GPS-
tested patients. In the raw data of 
7446 untested patients, the rate 
of AS use was 40%. AS use was 
similarly 40% to 41% among these 
patients using nearest-neighbor  
and optimal PSM algorithms. 
Untested patients matched by CEM 
or full PSM algorithms had an esti-
mated propensity for GPS testing 

method that bins (“coarsens”) lev-
els of covariates intended to lower 
imbalance that may result from 
missing data and the dependency 
on the research analyst’s specifica-
tion of the regression model.9 

Causal Effects of GPS Testing 
on AS After Matching
After matching, some covariates 
were dropped due to collinearities 
with other variables or small pro-
portions of patients derived by the 
match, such as “Region–Other” 
or “Insurance–Multiple”. When 
we tested the effect of No Testing 
versus GPS Testing on AS use by 
multivariable regression using our 

Summary of Balance Between No Testing and GPS Testing for Raw Data and After Matching (Nearest Neighbor)

TABLE 1

Covariate 

Raw Data Matched Data

No Testing  
(n 5 7446)

GPS  
(n 5 300)

Standardized 
Mean Differencea

No Testing  
(n 5 7446)

GPS  
(n 5 300)

Standardized 
Mean Differencea

Age, mean (SD) 66.5 63.9 20.31* 63.6 63.5 0.04

Region, n (%)

Northwest 12% 9% 20.09 6% 8% 0.08

Midwest 52% 47% 20.11 50% 53% 20.03

South 26% 31% 0.13 31% 25% 20.12

West 9% 12% 0.11 11% 14% 0.13

Other 1% 0% 20.07 0% 0% 0.00

Insurance, n (%)

Commercial 44% 52% 0.18* 54% 56% 0.03

Medicare 28% 23% 20.09* 20% 22% 0.05

Medicaid 1% 0% 20.11* 1% 0% 20.06*

Uninsured 7% 7% 0.02* 7% 8% 0.02

Multiple 21% 17% 20.09* 19% 15% 20.08

Other 7% 6% 20.06* 6% 6% 20.08

Number of selected 
diagnoses, mean (SD)b

0.29 0.16 23.36* 0.20 0.20 0.13*

Number of all 
diagnoses, mean (SD)c

0.16 0.14 20.45* 0.16 0.16 20.1

aThe standardized difference compares the difference in means in units of the pooled standard deviation. 
bErectile dysfunction, incontinence, cystitis, prostatitis.
cHistory of malignant neoplasm or symptoms or involving respiratory system and other chest symptoms. 
*p , 0.05.

The covariate-adjusted probability— 
propensity score estimated by logis-
tic regression—for GPS testing 
among patients without testing (No 
Testing) was 2% (95% CI, 0%-2%) 
(Figure 3A). By contrast, the 
covariate-adjusted propensity of 
GPS testing among the 300 patients 
who received GPS testing was 61% 
(95% CI, 57%-65%). After nearest-
neighbor matching, the propensity 
scores were substantially overlap-
ping with an average probability of 
50% (95% CI, 39%-60%) in those 
without testing and 50% (95% CI, 
39%-61%) in those who had GPS 
testing (Figure 3B). We also applied 
CEM, a newer, nonparametric 

72 • Vol. 20 No. 2 • 2018 • Reviews in Urology

Balancing Confounding and Generalizability: Effect of GPS Assay on Active Surveillance continued

4170018_04_RIU0799_V2_ptg01.indd   72 9/11/18   5:17 PM



of 58% to 60%, respectively. The 
untested patients matched with 
the genetic PSM algorithm had the 
lowest propensity for GPS testing, 
equal to 13%. 

In the multivariable logistic 
regression, GPS testing was asso-
ciated with a 31% (95% CI, 24%-
33%) mean difference in AS use 
(Table 2). Using PSM or CEM, the 
mean differences in AS use between 
GPS Testing and No Testing were 
approximately the same or higher 
than the differences using multi-
variable regression; all differences 

were statistically significant. 
Nearest neighbor, optimal, and full 
matching PSM algorithms all had 
mean differences of approximately 
30%. The mean differences for 
CEM and genetic PSM algorithms 
were 80% (95% CI, 72%-86%) and 
41% (37%-44%), respectively. 

Discussion
In assessing the association 
between GPS testing and AS use, 
we sought to strike a fair and rea-
sonable balance between (1) the 
generalizability of using a database, 

the ORD, with representation of 
the target population and (2) the 
application of state-of-the-art 
methods to control for baseline-
confounding variables. The various 
methods to control for confound-
ing bias revealed improved balance 
among baseline covariates, espe-
cially in those that had the greater 
imbalance without matching, such 
as age and the number of diagno-
ses. Regardless of the method for 
assigning matched sets, the effect 
of GPS Testing on AS use relative 
to no testing remained clinically 
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Figure 2. Effect of matching (nearest neighbor), relative to raw data, on the standardized mean difference between GPS Testing and No Testing for each covariate.
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through differences in baseline 
characteristics of the patients or the 
settings in which they were seen. 
These findings complement exist-
ing reports showing that the GPS 
assay provides clinically meaning-
ful results to newly diagnosed PCa 
patients electing AS or definitive 
treatment.21-23 

AS in low-risk PCa patients is 
recommended by the American 
Urological Association and the 
National Comprehensive Cancer 
Network.24-26 Despite the guide-
lines, however, substantial variabil-
ity in AS use exists across many 
centers, illustrating well-known 
challenges to changing manage-
ment patterns.27,28 Practice-pattern 
variables have been attributed to 
clinical and non-clinical fac-
tors.28,29 Among these, even physi-
cians who have endorsed AS report 
barriers in persuading patients of 
the value of a well-validated 
approach for deferring immediate 
treatment.30 How patients perceive 
and experience uncertainty in deci-
sions is an evolving field, revealing 
that regret avoidance is one of many 
motivators for patients and physi-
cians to desire additional objective, 
personalized data about future 
risks.31,32 The increased rate of AS 

in aforementioned personal, social, 
and structural factors.20 Notably, 
the findings herein are consistent 
with three previously reported 
studies in different settings showing 
that the GPS assay provides clini-
cally meaningful results to newly 
diagnosed PCa patients electing AS 
or definitive treatment.21-23

When subjects are matched into 
blocks or strata, as in CEM, reduc-
tions in the sample population can 
occur. Unlike this dataset, this 
potential threat to causal inference 
is especially relevant when the size 
of the control group is small com-
pared with the size of the treatment 
group. Exploring different match-
ing approaches, as we have done in 
this study, allows a more explicit 
view into the trade-off in lost preci-
sion in causal effects from smaller 
samples in the original population 
(increased variance) versus poten-
tial bias reduction due to improved 
balance and homogeneity in the 
matched cohorts. Our use of sev-
eral different methods for pre-
processing matching to improve 
causal inference in observational 
data provides further confidence 
that the effect of GPS testing on 
AS use is statistically significant 
and unlikely due to confounding 

meaningful and statistically sig-
nificant. In fact, all but one of the 
matching methods revealed a larger 
effect of GPS testing on AS use 
than did the original multivariable 
regression estimation.16 

A well-known limitation with 
any study, randomized or not, 
is that only covariates that are 
measurable—or extractable—from  
the dataset can be examined 
explicitly for balance between the 
intervention-assignment groups. 
A large enough sample size in a 
randomized trial increases con-
fidence but does not necessarily 
assure that balance has occurred 
in the potential, unmeasured con-
founders. Increasing the sample 
size extracted from a single obser-
vational, non-randomized dataset 
does not, however, have the same 
property unless there is substan-
tial correlation between the mea-
sured and unmeasured variables.19 
Researchers have been exploring 
and developing methods to assess 
the influence of unmeasured con-
founding in observational studies;  
a long-standing qualitative approach 
is to assess the presence of a con-
sistent direction and magnitude 
of effect across multiples studies, 
especially if they exhibit differences 

Comparison of Matching Metrics and Causal Effects From Multivariable Regression, Propensity Score Matching 
(PSM), and Coarsened Exact Matching (CEM)

TABLE 2

Balancing Method 
Number of Patients per Group AS Use in 

No Testing

Mean Difference in AS Use

No Testing GPS GPS vs No Testing (95% CI)

Multivariable regression 7446 300 40.0% 29% (24%, 33%)

Propensity score matching

Nearest neighbor 132 132 40.0% 33% (0.2%, 70%)

Optimal 300 300 41.0% 27% (0.1%, 80%)

Genetic 108 300 13.0% 80% (72%, 86%)

Full 7446 300 60.0% 29% (24%, 32%)

Coarsened exact matching 981 99 53.4% 41% (37%, 44%)
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use with GPS testing that we found 
in our study, regardless of the 
method for matching patients to 
mimic an experiment hidden in a 
real-world observational dataset, 
suggests that GPS testing is an effi-
cient approach to align clinical 
decisions with guideline recom-
mendations. 
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